1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | #!/usr/bin/env python3 ''' Beginning my deep learning journey - This part of the journey focus on the binary or two class classification problem. Learning to classify the Boston Housing dataset into positive and negative reviews based on text content File: dlBoston.py Author: Nik Alleyne Author Blog: www.securitynik.com Date: 2020-02-04 ''' import numpy as np from keras.datasets import boston_housing from keras import (models, layers) from matplotlib import pyplot as plt def build_model(X_train): model = models.Sequential() model.add(layers.Dense(64, activation='relu', input_shape=(X_train.shape[1],))) model.add(layers.Dense(64, activation='relu')) ''' Final layer does not have an activation function defined By not specifying an activation function, the model is free to learn and predict the linear values ''' model.add(layers.Dense(1)) ''' Mean Squared Error (mse) is widely used in regression problems Mean Absolute Error (mae) is used to monitor the absolute value between the predictions and the targets ''' model.compile(optimizer='rmsprop', loss='mse', metrics=['mae']) return model def main(): # Devide the data into training and testing sets (X_train, y_train), (X_test, y_test) = boston_housing.load_data() # Get the shape of both the training and testing set print('\n[*] X_train shape: {}'.format(X_train.shape)) print('[*] y_train shape: {}'.format(y_train.shape)) print('[*] X_test shape: {}'.format(X_test.shape)) print('[*] y_test shape: {}'.format(y_test.shape)) print('\n[*] Sample records from X_train\n {}'.format(X_train)) print('\n[*] Sample record from y_train\n {}'.format(y_train)) mean = X_train.mean(axis=0) X_train -= mean print('\n[*] X_train after finding the mean \n{}'.format(X_train)) std_deviation = X_train.std(axis=0) X_train /= std_deviation print('\n[*] X_train after finding the standard deviation \n{}'.format(X_train)) X_test -= mean X_test /= std_deviation print('\n[*] X_test after finding the mean \n{}'.format(X_test)) #Setting up cross validation k = 4 num_validation_samples = len(X_train) // k print('[*] Num Validation samples {}'.format(num_validation_samples)) num_epochs = 2 all_scores = [] mae_histories = [] for i in range(k): print('[*] Proessing fold: {}'.format(i)) X_train_val = X_train[i * num_validation_samples: (i + 1) * num_validation_samples] y_train_val = y_train[i * num_validation_samples: (i + 1) * num_validation_samples] X_train_patial = np.concatenate([X_train[:i * num_validation_samples], X_train[(i+1) * num_validation_samples:]], axis=0) y_train_patial = np.concatenate([y_train[:i * num_validation_samples], y_train[(i+1) * num_validation_samples:]], axis=0) model = build_model(X_train) nn_history = model.fit(X_train_patial, y_train_patial, epochs=num_epochs, batch_size=1, verbose=1) val_mse, val_mae = model.evaluate(X_train_val, y_train_val, verbose=1) all_scores.append(val_mae) print('[*] History information from nn_history.history \n{}'.format(nn_history.history)) mae_histories = nn_history.history['mae'] print('\n[*] X_train Validation samples\n{}'.format(X_train_val)) print('\n[*] y_train validation samples\n{}'.format(y_train_val)) print('[*] All scores \n{}'.format(all_scores)) print('[*] Here is the mean of all scores {}'.format(np.mean(all_scores))) print('[*] Here is the mae scores {}'.format(mae_histories)) print('[*] Here is the mae mean scores {}'.format(np.mean(mae_histories))) if __name__ == '__main__': main() ''' References: https://www.manning.com/books/deep-learning-with-python ''' |
Monday, March 23, 2020
Beginning Deep Learning, Working with the Boston Housing Dataset
This code is all part of my deep learning journey and as always, is being placed here so I can always revisit it as I continue to expand on my learning of this topic.
Learning about KMeans and the Elbow Curve
This code is all part of my deep learning journey and as always, is being placed here so I can always revisit it as I continue to expand on my learning of this topic.
dad
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | #!/usr/bin/env python3 ''' Continuting my journey learning about machine learning This code is focused on learning about Clustering and KMeans with a specific focus on the Elbow Method Author: Nik Alleyne Author Blog: www.securitynik.com Filename: KMeans-pkts-elbow.py ''' import pandas as pd import numpy as np from sklearn.cluster import KMeans from sklearn.preprocessing import MinMaxScaler from matplotlib import pyplot as plt def main(): pkt_df = pd.read_csv('/tmp/FeaturePktEnginFinal.csv', verbose=True) print(pkt_df.columns) # Looking for null data print('[*] Looking for NULL data \n{}'.format(pkt_df.isnull())) # Filling NULL data pkt_df.fillna(0, inplace=True) # Leveraging MinMax Scaler to attempt to give the data better representation min_max_scaler = MinMaxScaler() print('[*] Here is your MinMax Scaler information \n{}'.format(min_max_scaler)) # Scaling the destination ports and tcp length pkt_df['tcpdport'] = min_max_scaler.fit_transform(pkt_df[['tcpdport']]) pkt_df['tcplen'] = min_max_scaler.fit_transform(pkt_df[['tcplen']]) print('\n[*] Here the Min Max Scaled TCP Length \n{}'.format(pkt_df['tcplen'])) print('\n[*] Here the Min Max Scaled TCP Destination Ports \n{}'.format(pkt_df['tcpdport'])) # Setup a new KMeans classifier to work on the scaled data km_scaled = KMeans(n_clusters=3) km_scaled_predict = km_scaled.fit_predict(pkt_df[['tcpdport', 'tcplen']]) print('[*] Here are your new clusters \n{}'.format(km_scaled_predict)) print('\n[*] Once again, here are your cluster centers \n{}'.format(km_scaled.cluster_centers_)) # Add km_scaled_predict as a new column pkt_df['km_scaled_predict'] = km_scaled_predict print('[*] Here is the new data \n{}'.format(pkt_df)) # Plot a new scatter plot # Create 3 new data frames to plot the graphs pkt_df0 = pkt_df[pkt_df.km_scaled_predict == 0] pkt_df1 = pkt_df[pkt_df.km_scaled_predict == 1] pkt_df2 = pkt_df[pkt_df.km_scaled_predict == 2] # Scatter plot the packet size plt.scatter(pkt_df0.tcpdport, pkt_df0['tcplen'], color='green') plt.scatter(pkt_df1.tcpdport, pkt_df1['tcplen'], color='red') plt.scatter(pkt_df2.tcpdport, pkt_df2['tcplen'], color='blue') ''' Add the centroids to the scatter plots All rows and first column [:, 0] All rows and second column [:, 1] ''' plt.scatter(km_scaled.cluster_centers_[:,0], km_scaled.cluster_centers_[:,1], color='black', marker='*', label='centroid') plt.xlabel('TCP Destination Port') plt.ylabel('TCP Packet Length') plt.legend() plt.show() # Finding the optimal K value using Elbow Method sum_of_sqr_err = [] for k in range(1,10): km_clf = KMeans(n_clusters=k) km_clf.fit(pkt_df[['tcplen', 'tcpdport']]) # Inertia is the Sum Of Squares Error (SSE) sum_of_sqr_err.append(km_clf.inertia_) # Print the SSE values print('\n[*] Here are your SSE Values \n{}'.format(sum_of_sqr_err)) # plot the elbow graph plt.xlabel('K') plt.ylabel('Sum of Squared') plt.plot(range(1,10), sum_of_sqr_err) plt.show() # Ploting new clusters with K=2 km_scaled = KMeans(n_clusters=2) km_scaled_predict = km_scaled.fit_predict(pkt_df[['tcpdport', 'tcplen']]) print('[*] Here are your new clusters \n{}'.format(km_scaled_predict)) print('\n[*] Once again, here are your cluster centers \n{}'.format(km_scaled.cluster_centers_)) # Add km_scaled_predict as a new column pkt_df['km_scaled_predict'] = km_scaled_predict print('[*] Here is the new data \n{}'.format(pkt_df)) # Plot a new scatter plot # Create 3 new data frames to plot the graphs pkt_df0 = pkt_df[pkt_df.km_scaled_predict == 0] pkt_df1 = pkt_df[pkt_df.km_scaled_predict == 1] pkt_df2 = pkt_df[pkt_df.km_scaled_predict == 2] # Scatter plot the packet size plt.scatter(pkt_df0.tcpdport, pkt_df0['tcplen'], color='green') plt.scatter(pkt_df1.tcpdport, pkt_df1['tcplen'], color='red') plt.scatter(pkt_df2.tcpdport, pkt_df2['tcplen'], color='blue') ''' Add the centroids to the scatter plots All rows and first column [:, 0] All rows and second column [:, 1] ''' plt.scatter(km_scaled.cluster_centers_[:,0], km_scaled.cluster_centers_[:,1], color='black', marker='*', label='centroid') plt.xlabel('TCP Destination Port') plt.ylabel('TCP Packet Length') plt.legend() plt.show() plt.close('all') if __name__ == '__main__': main() ''' References: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.html https://dev.to/nexttech/k-means-clustering-with-scikit-learn-14kk https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html https://www.youtube.com/watch?v=ZueoXMgCd1c https://www.youtube.com/watch?v=EItlUEPCIzM https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html ''' |
dad
Beginning Deep Learning with Dogs and Cats Classification
This code is all part of my deep learning journey and as always, is being placed here so I can always revisit it as I continue to expand on my learning of this topic.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 | #!/usr/bin/env python3 ''' Beginning my deep learning journey File: dl_catsVdogs_v3.py This is a continuation from dl_cats_Vdogs.py. This version 3 addresses the over fitting issues via usage of a pre-trained network A pre-trained network is a saved version of a network which was trained on a larger dataset. The two ways to use pre-trained networks are feature extraction and fine-tuning Feature extraction uses representation learned from previous models to extract interesting features. These features are then run against a newly trained classifier Author: Nik Alleyne Author Blog: www.securitynik.com Date: 2020-03-06 ''' import os, shutil from keras import (models, optimizers) from keras.applications import VGG16 from keras.layers import (Conv2D, MaxPooling2D, Flatten, Dense, Dropout) from keras.preprocessing.image import (ImageDataGenerator, image) from matplotlib import pyplot as plt def main(): cats_dogs_dataset = './PetImages' cats_dogs = '/tmp/cats_dogs' print('[*] Checking to the if "{}" directory exists ...'.format(cats_dogs)) if (os.path.exists(cats_dogs)): print('[-] Deleting directory {}'.format(cats_dogs)) shutil.rmtree(cats_dogs) print('[+] Making temporary image directory ...') os.mkdir(cats_dogs) print(' [+] Creating training set directory ...') train_dir = os.path.join(cats_dogs, 'train_set') cats_train = os.path.join(train_dir, 'cats') dogs_train = os.path.join(train_dir, 'dogs') os.mkdir(train_dir) os.mkdir(cats_train) os.mkdir(dogs_train) print(' [+] Creating validation set directory ...') val_dir = os.path.join(cats_dogs, 'val_set') cats_val = os.path.join(val_dir, 'cats') dogs_val = os.path.join(val_dir, 'dogs') os.mkdir(val_dir) os.mkdir(cats_val) os.mkdir(dogs_val) print(' [+] Creating testing set directory ...') test_dir = os.path.join(cats_dogs, 'test_set') cats_test = os.path.join(test_dir, 'cats') dogs_test = os.path.join(test_dir, 'dogs') os.mkdir(test_dir) os.mkdir(cats_test) os.mkdir(dogs_test) # copy the first 1000 cat images from for training data cat_train_images = ['{}.jpg'.format(i) for i in range(1000)] for cat in cat_train_images: src = os.path.join(cats_dogs_dataset +'/Cat', cat) dst = os.path.join(cats_train, cat) shutil.copyfile(src, dst) # copy the first 1000 dog images for training data dog_train_images = ['{}.jpg'.format(i) for i in range(1000)] for dog in dog_train_images: src = os.path.join(cats_dogs_dataset +'/Dog', dog) dst = os.path.join(dogs_train, dog) shutil.copyfile(src, dst) # copy the next 500 cat images and used as validation data cat_val_images = ['{}.jpg'.format(i) for i in range(1000, 1500)] for cat in cat_val_images: src = os.path.join(cats_dogs_dataset +'/Cat', cat) dst = os.path.join(cats_val, cat) shutil.copyfile(src, dst) # copy the next 500 dog images and used as validation data dog_val_images = ['{}.jpg'.format(i) for i in range(1000, 1500)] for dog in dog_val_images: src = os.path.join(cats_dogs_dataset +'/Dog', dog) dst = os.path.join(dogs_val, dog) shutil.copyfile(src, dst) # copy the final 500 cat images and used as test data cat_test_images = ['{}.jpg'.format(i) for i in range(1500, 2000)] for cat in cat_test_images: src = os.path.join(cats_dogs_dataset +'/Cat', cat) dst = os.path.join(cats_test, cat) shutil.copyfile(src, dst) # copy the final 500 dog images and used as test data dog_test_images = ['{}.jpg'.format(i) for i in range(1500, 2000)] for dog in dog_test_images: src = os.path.join(cats_dogs_dataset +'/Dog', dog) dst = os.path.join(dogs_test, dog) shutil.copyfile(src, dst) # Verifying the number of cat records in each directory print('[*] Total cat training images: {}:{}'.format(cats_train, len(os.listdir(cats_train)))) print('[*] Total cat validation images: {}:{}'.format(cats_val, len(os.listdir(cats_val)))) print('[*] Total cat test images: {}:{}'.format(cats_test, len(os.listdir(cats_test)))) # Verifying the number of dog records in each directory print('[*] Total cat training images: {}:{}'.format(dogs_train, len(os.listdir(dogs_train)))) print('[*] Total cat validation images: {}:{}'.format(dogs_val, len(os.listdir(dogs_val)))) print('[*] Total cat test images: {}:{}'.format(dogs_test, len(os.listdir(dogs_test)))) # Initiate the VGG16 convulational base pretrained_model_base = VGG16(weights='imagenet', include_top=False, input_shape=(150, 150, 3)) #rint the summary of the network print('[*] Here is the convulational network base \n{}'.format(pretrained_model_base.summary())) ''' Create the colvolution neural network from the pretrained model. This is meant to help to address the overfitting related to small datasets. This is being used in conjunction with data augmentation ''' convnet = models.Sequential() convnet.add(pretrained_model_base) # Flatten the layers convnet.add(Flatten()) # Add dense layers convnet.add(Dense(512, activation='relu')) convnet.add(Dense(1, activation='sigmoid')) # Compile the model convnet.compile(loss='binary_crossentropy', optimizer=optimizers.RMSprop(lr=0.01), metrics=['accuracy']) print('[*] Here is the model summary \n{}'.format(convnet.summary())) # Train the network using data augmentation training_data_generator = ImageDataGenerator(rescale=1.0/255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True,fill_mode='nearest') # Testing data should not be augmented testing_data_generator = ImageDataGenerator(rescale=1.0/255) training_data_generated = training_data_generator.flow_from_directory(train_dir, target_size=(150, 150), batch_size=32, class_mode='binary') validation_data_generated = testing_data_generator.flow_from_directory(val_dir, target_size=(150, 150), batch_size=32, class_mode='binary') convnet.compile(loss='binary_crossentropy', optimizer=optimizers.RMSprop(lr=0.02), metrics=['accuracy']) ''' Try to fit on the training data to see what occurrs. Set the epoch and steps as 10 just for my learning. These numbers should be larger ''' convnet_history = convnet.fit_generator(training_data_generated, steps_per_epoch=5, epochs=10, validation_data=validation_data_generated, validation_steps=8) print('[*] Here is what the network history looks like:\n {}'.format(convnet_history.history)) # Save the model convnet.save('/tmp/convnet_v3.h5') ''' Plot the loss and accuracy of the model This is being done over the training and validation data ''' train_accuracy = convnet_history.history['accuracy'] train_loss = convnet_history.history['loss'] validation_accuracy = convnet_history.history['val_accuracy'] validation_loss = convnet_history.history['val_loss'] convnet_epochs = range(1, len(train_accuracy) + 1) # Plot the graph to compare the training and validation loss and accuracy plt.plot(convnet_epochs, train_accuracy, 'b', label='Training Accuracy') plt.plot(convnet_epochs, validation_accuracy, 'bo', label='Validation Accuracy') plt.title('Training vs Validation Accuracy') plt.legend() plt.figure() plt.plot(convnet_epochs, train_loss, 'b', label='Training Loss') plt.plot(convnet_epochs, validation_loss, 'bo', label='Validation Loss') plt.title('Training vs Validation Accuracy') plt.legend() plt.show() if __name__ == '__main__': main() ''' References: https://www.microsoft.com/en-us/download/details.aspx?id=54765 https://keras.io/preprocessing/image/ https://keras.io/models/sequential/ https://keras.io/applications/#extract-features-with-vgg16 ''' |
Beginning Deep Learning IMDB Dataset
This code is all part of my deep learning journey and as always, is being placed here so I can always revisit it as I continue to expand on my learning of this topic.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 | #!/usr/bin/env python3 ''' Beginning my deep learning journey - This part of the journey focus on the binary or two class classification problem. Learning to classify the IMDB dataset into positive and negative reviews based on text content File: dlIMDB.py Author: Nik Alleyne Author Blog: www.securitynik.com Date: 2020-01-31 ''' import numpy as np from keras.datasets import imdb from keras import (optimizers, layers, models) from matplotlib import pyplot as plt from keras.utils.vis_utils import plot_model # Function used to vectorize data, making into a set of 1s nd 0s def vectorize_data(sequences, dimension=10000): results = np.zeros((len(sequences), dimension)) for i, sequence in enumerate(sequences): results[i, sequence] = 1 return results def main(): ''' split the data into training and testing Use the top 10,000 most frequently seen words Discard words least seen ''' (X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=10000, maxlen=None) # Looking for the total number of words in the entire set total_words = len(np.unique(np.hstack(X_train))) + len(np.unique(np.hstack(X_test))) print('[*] Total Words in the dataset: {}'.format(total_words)) # Taking a look at the data print('[*] X_train sample data:\n{}'.format(X_train[5])) print('\n[*] y_train sample data: {}'.format(y_train[5])) print('\n[*] X_test sample data:\n{}'.format(X_test[5])) print('\n[*] y_test sample data: {}'.format(y_test[5])) # Get the shape of both the training and testing set print('\n[*] X_train shape: {}'.format(X_train.shape)) print('[*] y_train shape: {}'.format(y_train.shape)) print('[*] X_test shape: {}'.format(X_test.shape)) print('[*] y_test shape: {}'.format(y_test.shape)) ''' Encode both the training and testing data so that it can be fed to the neural network First vectorize the training and testing data ''' X_train = vectorize_data(X_train).astype('float32') X_test = vectorize_data(X_test).astype('float32') print('\n[*] Encoded X_train data: \n {}'.format(X_train)) ''' Convert the testing data to np array ''' y_train = np.asarray(y_train).astype('float32') y_test = np.asarray(y_test).astype('float32') # Create the validation set of 10000 records from the training set X_train_val = X_train[:10000] y_train_val = y_train[:10000] ''' Create a new training and testing set from the remainder of the X_train after the validation records have been extracted ''' X_train_partial = X_train[10000:] y_train_partial = y_train[10000:] print('\n [*] Here are your unique classes {}'.format(np.unique(y_train))) # Build the neural network model = models.Sequential() model.add(layers.Dense(64, activation='relu', input_shape=(10000,))) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(1, activation='sigmoid')) # Compile the model model.compile(optimizer=optimizers.RMSprop(lr=0.001), loss='binary_crossentropy', metrics=['accuracy']) ''' Fit the model and test it using the validation data The returned results have a history object which has a member history Take the results from the history object and store it in the nn_history variable this variable tracks the accuracy & loss and validation accuracy & validation loss ''' nn_history = model.fit(X_train_partial, y_train_partial, epochs=3, batch_size=512, validation_data=(X_train_val, y_train_val)) print('\n[*] Here is the results from history_nn\n{}'.format(nn_history.history)) print('\n[*] Here are the keys for nn_history.history: {}'.format(nn_history.history.keys())) ''' Perform an evaulation of the model based oh the test data ''' results = model.evaluate(X_test, y_test, verbose=1) print('[*] Here is the loss results for the evaluated model {}'.format(results[0])) print('[*] Here is the accuracy results for the evaluated model {}'.format(results[1])) #Ploting the training and validation loss nn_history_loss = nn_history.history['loss'] nn_history_val_loss = nn_history.history['val_loss'] epochs = range(1, len(nn_history_loss) + 1) plt.plot(epochs, nn_history_loss, 'bo', label='Training Loss') plt.plot(epochs, nn_history_val_loss, 'b', label='Validation Loss') plt.title(' Training vs Validation Loss ') plt.xlabel('epochs') plt.ylabel('loss') plt.legend() plt.show() ''' Quite interesting for me, as the training loss decreased, the validation loss increased ''' #Plotting the training and validation accuracy nn_history_accuracy = nn_history.history['accuracy'] nn_history_val_accuracy = nn_history.history['val_accuracy'] plt.clf() plt.plot(epochs, nn_history_accuracy, 'bo', label='Training Accuracy') plt.plot(epochs, nn_history_val_accuracy, 'b', label='Validation Accuracy') plt.title(' Training vs Validation Accuracy ') plt.xlabel('epochs') plt.ylabel('loss') plt.legend() plt.show() plt.close('all') ''' Another finding was that as the training accuracy increased, the validation acurracy basically flatlined. These findings apparently ties back into overfitting The model is doing well on the training data but horrible on the validation data The fact that a model performs well on training data does not mean it will perform well on data it has never seen before I adjusted the epoch a few times and it sees 3 might be the sweet spot for my example ''' # Time to make a prediction on the trained model predict_sentiment = model.predict(X_test) print('[*] Here are your sentiments for the testing data \n{}'.format(predict_sentiment)) print('\n[*] Model Summary Information \n{}'.format(model.summary())) # Create a visual plot of the model plot_model(model, to_file='/tmp/model.png', show_shapes=True, show_layer_names=True) if __name__ == '__main__': main() ''' Referenes: https://www.manning.com/books/deep-learning-with-python https://keras.io/getting-started/sequential-model-guide/ https://keras.io/optimizers/ https://keras.io/datasets/#imdb-movie-reviews-sentiment-classification https://machinelearningmastery.com/predict-sentiment-movie-reviews-using-deep-learning/ https://towardsdatascience.com/machine-learning-word-embedding-sentiment-classification-using-keras-b83c28087456 https://www.stackabuse.com/python-for-nlp-movie-sentiment-analysis-using-deep-learning-in-keras/ https://machinelearningmastery.com/visualize-deep-learning-neural-network-model-keras/ https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/ ''' |
Subscribe to:
Posts (Atom)